Shot No.	Explosive Thickness in Mm(D)	Mean Thickness of "Twinned" Zone in Mm(L)	L/D of Twin Zone Boundary	Pressure* at Twin Boundary in Kb	Depth of 130 Kb Point	L/D of 130 Ki Point
1593	12.78	7.0 ± 0.2	0.55 ± 0.02	150	11.3	0.88
1594	12.70	7.0 ± 0.2	0.55 ± 0.02	150	13.2	1.04
1664	24.0	15.0 ± 0.2	0.62 ± 0.01	145	25	1.04
2113	25.4	13.0 ± 0.2	0.51 ± 0.01	155	-	-
2614	25.4	12.5 ± 0.2	0.49 ± 0.01	155	-	-
2141	25.4	13.5 ± 0.2	0.53 ± 0.01	152	26	1.02

turns to normal the γ iron crystals will transform back to α -iron by means of a second martensite transformation into 24 possible orientations which are related to the γ iron orientations. Some of the newly formed α grains may have transformed from γ iron, by the same shearing movements which produced γ iron from α iron, thereby returning to their initial orientation. In general, however, the new grains will have a different orientation than they had initially. According to the Bowles mechanism all of the α grains with the same orientation will exhibit twin relationships with each other.

The reason that the boundary between the heavily and the lightly banded regions occurs at a pressure greater than the transition pressure of 130 kbars may be due to the nonisothermal nature of the transformation. In such a case the material may not all

transform at once but would go through a system of mixed phases.² This means that there would be no volume change without increase of pressure, and the volume corresponding to the beginning of the heavily banded region would be at a pressure somewhat higher than 130 kbars, where the transition begins.

REFERENCES

- ¹⁵. Katz, D. R. Curran, and D. G. Doran: Ilugoniot Equation of State of Aluminum and Steel from Oblique Shock Measurement, Submitted for publication, *Journal of Applied Physics*, April, 1958.
 ¹⁵Bancroft, et al., *Journal of Applied Physics*, 1956, vol. 27, p. 291.
 ¹⁶W. E. Drummond: *Journal of Applied Physics*, 1957, vol. 28, p. 998.
 ¹⁶Ilenry Marion Howe: Metallography of Steel and Cast Iron, McGraw-Hill, N. Y., 1916.
 ¹⁷K. Harnecker and E. Rassow: Zeitschrift für Metallkunde, 1924, vol. 16.

- p. 312.
 *C. H. Mathewson and G. H. Edmunds: AIME Trans., 1928, vol. 80, p. 311.
 *J. S. Bowles: Acta Crystallographica, 1951, vol. 4, p. 162.